
J. Fluid Mech. (2009), vol. 620, pp. 89–119. c© 2009 Cambridge University Press

doi:10.1017/S0022112008004904 Printed in the United Kingdom

89

Steady separated flow past a circular cylinder
at low Reynolds numbers

SUBHANKAR SEN1, SANJAY MITTAL2†
AND GAUTAM BISWAS1

1Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
2Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

(Received 26 March 2008 and in revised form 5 November 2008)

The steady two-dimensional laminar flow around a stationary circular cylinder has
been investigated via a stabilized finite-element method. The Reynolds number Re is
based on the cylinder diameter and free-stream speed. The results have been presented
for 6 � Re � 40 and the blockages between 0.000125 and 0.80. The blockage B is the
ratio of the cylinder diameter to the domain width. There is large scatter in the value
of Res , reported in the literature, marking the onset of the flow separation. From the
present study the Res is found to be 6.29, approximately for B = 0.005. The effect
of the blockage on the characteristic flow parameters is found to be insignificant
for B � 0.01. The bubble length, separation angle and Res exhibit non-monotonic
variation with the blockage. It is for the first time that such a behaviour for the
separation angle and Res is being reported. Two types of boundary conditions at the
lateral walls have been studied: the slip wall and towing tank. In general for high
blockage, the results from the slip boundary condition are closer to the ones for the
unbounded flow. In that sense, the use of the slip boundary condition as opposed to
the towing tank boundary condition on the lateral walls is advocated. The bubble
length, separation angle, base suction, total drag, pressure drag, viscous drag and
maximum vorticity on the cylinder surface for the steady flow are found to vary
as Re, Re−0.5, Re−1, Re−0.5, Re−0.64, Re−0.60 and Re0.5, respectively. The extrapolated
results for the steady flow, for higher Re, are found to match quite well with the other
results from the literature.

1. Introduction
The incompressible flow past a stationary cylinder is a classical bluff body problem

in fluid mechanics. Its enriched physics and real-life applications have attracted the
attention of the engineers and scientists for over a century, leading to many theoretical
and experimental investigations. Despite its simple geometry, the flow past a circular
cylinder is considered to be a baseline case of more complex flows (Zdravkovich
1997).

To this day, there is no agreement on the exact value of the laminar separation
Reynolds number, Res , for the steady unbounded flow. The dependence of Res , for
confined flow, on the boundary conditions and blockage has received little attention
in the past. The blockage, B , due to the cylinder is defined as the ratio of the cylinder
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Figure 1. Schematic representation of the cylinder and separation bubble cross-section.

diameter D to the width H of the experimental apparatus or computational domain.
In the present work we conduct a systematic numerical investigation to address the
dependence of Res and numerical treatment of the boundary conditions on the lateral
walls. Recent numerical investigations involving the blockage effect on the flow field
of a circular cylinder at low Re include Kumar & Mittal (2006a,b) and Prasanth
et al. (2006). Kumar & Mittal (2006a,b) investigated the effect of the blockage on
the vortex shedding frequency and the critical Reynolds number Rec leading to the
vortex shedding. Prasanth et al. (2006) studied the blockage effect on the flow field of
a freely vibrating cylinder at low Re.

Before proceeding to the current numerical work, we describe the structure of the
separation bubble or standing vortex pair and present an outline of the previous
experimental, numerical, analytical and semi-analytical investigations involving this
flow by different researchers. A schematic of the steady separation bubble is shown
in figure 1. The flow is from left to right. The key geometrical parameters of interest
that characterize the separation bubble are the bubble length L and separation angle
θs (expressed in degrees). The separation angle θs is measured in a counterclockwise
direction from the rear stagnation point or base point F. The bubble length (also
called eddy length) is defined as the distance measured along the wake centreline
between the base point, F, and the wake stagnation point G. The two symmetric,
counter-rotating recirculation zones remain stably attached to the cylinder till the
initiation of the vortex shedding.

Nisi & Porter (1923) conducted a pioneering investigation to determine the
separation Reynolds number and found Res =3.2. Their experimental investigations
were based on smoke visualization. Using oil as the working fluid, Homann (1936)
studied the flow around the cylinders and provided flow visualization pictures
between Re =1.95 and Re = 140.5. He estimated Res = 6 for B = 0.067. Taneda
(1956) conducted experiments in a towing tank. From the plot of the eddy length
with Re, he determined Res = 5 by extrapolation. Grove et al. (1964) and Acrivos
et al. (1965, 1968) conducted a series of oil tunnel experiments for the steady
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separated flow. For the constant blockage, these experiments consistently showed
linear variation of the bubble length with Re even in the presence of a splitter
plate. A shorter bubble with the wall proximity was also noted. Nishioka & Sato
(1974) conducted wind tunnel experiments and determined the detailed structure
of the wake velocity distribution for Re in the range of 10–80. Coutanceau &
Bouard (1977) employed flow visualization to explore the closed wake structure
and its evolution with Re for 5 < Re < 40 in the towing tank experiments. The Res

estimated by Coutanceau & Bouard (1977) is 4.4 for the unbounded flow. In their
experiments, λ was the ratio of the cylinder and tank diameters. The value of Res

was found to increase while the eddy length and separation angle decrease with
increasing λ.

The early numerical investigations mainly employed the streamfunction–vorticity
(ψ–ω) formulation of the Navier–Stokes equations and the finite-difference
discretization method. The numerical solutions obtained by integrating the steady-
state equations include the works of Thom (1933) at Re =10 and 20, Kawaguti
(1953) at Re = 40 and Apelt (1961) at Re =40 and 44. All these studies consistently
indicated an approximate linear growth of the standing vortex pair with Re. The
results produced by Allen & Southwell (1955) in the range of Re = 0–103 exhibit a
tendency towards reduced bubble length for some Re between 10 and 100. The work
of Hamielec & Raal (1969) also predicts an ultimate decrease of the bubble length
beyond Re = 50. Takami & Keller (1969) solved the ψ–ω equations up to Re = 60 on
a transformed grid by finite-difference-type discretization and estimated Res < 7. This
work was an extension of the earlier investigation by Keller & Takami (1966) for the
Reynolds number range of 2–15.

Following a finite-difference discretization of the time-dependent ψ–ω equations,
Kawaguti & Jain (1966) explored the flow for Re = 1 to 100 and reported the steady-
state solutions in the range of Re = 10–50. The length of the standing eddy at Re =50
was overpredicted. Thoman & Szewczyk (1969) solved the time-dependent ψ–ω

equations on a hybrid grid. Though they documented results for Re ranging from 1
to 3 × 105, owing to the inadequate domain size, the low Re solutions were influenced
by the wall effects. Son & Hanratty (1969) provided finite-difference solutions based
on the ψ–ω formulation for Re =40, 200 and 500. Based on numerical investigations,
Pruppacher, Clair & Hamielec (1970) concluded that the standing eddy begins to
develop at Res ≈ 5. Tuann & Olson (1978) performed one of the earliest finite-
element simulations for the flow past a circular cylinder at low Re. The simulations
were based on the ψ–ω formulation, and they also concluded that Res ≈ 5. Fornberg
(1980, 1985, 1991) conducted extensive numerical investigations for the steady flow
past a circular cylinder up to Re = 800. An approximate linear growth of the eddy with
the Reynolds number was observed. Following a penalty finite-element formulation,
Chen (2000) determined Res at blockages 0.10 and much larger subject to different
boundary conditions (see table 1). A monotonic increase of Res with the blockage
was observed in each case. Wu et al. (2004) conducted towing tank experiments
and spectral-element investigations for the Reynolds number range of 7–280. They
predicted smaller θs with increasing blockage and also suggested that the laminar
separation commences at Res > 6.

The initial theoretical studies to determine the separation Reynolds number were
conducted by Tomotika & Aoi (1950) and Yamada (1954). Based on the asymptotic
theory, Smith (1979) predicted the behaviour of various characteristic flow parameters
for the steady laminar flow past a circular cylinder. The numerical solutions of
Fornberg (1980) for Re up to 300 were compared with theory in a later paper by



92 S. Sen, S. Mittal and G. Biswas

Studies Methoda B Res

Nisi & Porter (1923) Experiments (smoke visualization) 3.2
Homann (1936) Experiments 0.067 6
Taneda (1956) Experiments (in towing tank) 0.03 5
Takami & Keller (1969) Numerical (FDM on ψ − ω equations) < 7
Underwood (1969) Semi-analytical 5.75
Dennis & Chang (1970) Semi-analytical 6.2
Pruppacher et al. (1970) Numerical ≈ 5
Nieuwstadt & Keller (1973) Semi-analytical ≈ 7
Coutanceau & Bouard (1977) Experiments (in towing tank) 0 4.4

0.024 5.2
0.07 7.2
0.12 9.6

Tuann & Olson (1978) Numerical (FEM on ψ − ω equations) ≈ 5
Chen (2000) Numerical (penalty FEM) 0.1b 6.9

0.1c 4.6
0.1d 6.2

Wu et al. (2004) Experiments (in towing tank) > 6
and numerical (SEM)

aFDM, finite-difference method; FEM, finite-element method; SEM, spectral-element method.
bFlow between two stationary infinite plates (0.10 � B � 0.95).
cFlow between two stationary semi-infinite plates (0.10 � B � 0.95).
dTowing tank boundary condition (0.10 � B � 0.70).

Table 1. Summary of the separation Re for the steady flow past a circular cylinder as
proposed by different researchers.

Smith (1981). A satisfactory agreement for various flow parameters was found except
for the bubble length.

Based on the semi-analytical approach, Dennis & Shimshoni (1965) provided results
for Re = 0.01–106. Their results show an increase in L with Re for low Re. Beyond
Re ≈ 30, they reported a decrease in the bubble length. This observation is in stark
contrast to the general agreement that L increases with increasing Re. Following a
semi-analytical method of series truncation for the Navier–Stokes equations of motion,
Underwood (1969) presented results for Re = 0.4–10 and found Res = 5.75. Following
a ψ–ω formulation, Dennis & Chang (1970) predicted Res to exist between 5 and 7
and estimated its value as 6.2. By employing finite Fourier series approximations for
ψ and ω, Nieuwstadt & Keller (1973) solved the steady ψ–ω equations and reported
results for Re = 1–40. They concluded that Res ≈ 7.

The separation Reynolds numbers reported by various studies in the past and
relevant information are listed in table 1. Large scatter in the value of Res , which
ranges from 3.2 to 7, is seen. To our knowledge, there is no systematic investigation
of the evolution of Res with respect to the blockage except the experimental work
of Coutanceau & Bouard (1977) and the recent numerical work of Chen (2000).
However, the investigation of Chen (2000) does not include the B < 0.10 cases for
the prediction of Res . One of the objectives of the present study is to determine the
Res for the unbounded flow. We are also interested in investigating the dependence
of Res on the blockage and boundary conditions for the confined flow.

A stabilized finite-element method with equal order bilinear interpolation for the
velocity and pressure has been used. The computational domain has been discretized
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using a block structured, non-uniform mesh. At high Re, in an advection-dominated
flow, the Galerkin formulation of the flow equations leads to node-to-node oscillations
in the velocity field. This numerical instability is overcome by adding the streamline-
upwind/Petrov–Galerkin (SUPG) stabilization terms. The SUPG formulation for the
convection-dominated flows was introduced by Hughes & Brooks (1979) and Brooks
& Hughes (1982). The pressure-stabilizing/Petrov–Galerkin (PSPG) stabilization
terms are added to the formulation to enable the use of equal-order interpolation
for the velocity and pressure. Hughes, Franca & Balestra (1986) introduced the
pressure stabilization methods in the context of Stokes flow, and Tezduyar et al.
(1992) generalized the method to finite Reynolds number flows.

The outline of the rest of the paper is as follows: In § 2, the governing equations for
an incompressible fluid flow are reviewed. The finite-element formulation involving
the SUPG and PSPG stabilizations is presented in § 3. The definition of the problem
and the finite-element mesh are described in §§ 4 and 5, respectively. The validation of
the formulation and its implementation are discussed in § 6. The pressure distribution
on the surface of the cylinder and the drag coefficient are compared with the earlier
results, and excellent agreement is observed. The domain extent and mesh convergence
studies are also presented in the same section. The main results are presented and
discussed in § 7. The effect of the blockage, boundary conditions and Re on the
characteristic flow quantities is studied. Also, the separation Reynolds number is
determined for the unbounded and confined flow. Finally, empirical relations are
proposed for various flow parameters and utilized to predict the flow characteristics
at higher Re. In § 8, a few concluding remarks are made.

2. The governing equations
Let Ω ⊂ IRnsd be the spatial domain, where nsd = 2 is the number of space

dimensions. The boundary of Ω is denoted by Γ and is assumed to be piecewise
smooth. The closure of the domain is denoted by Ω . The spatial coordinates are
denoted by x. The equations governing the steady flow of an incompressible fluid of
density, ρ, are

ρ(u · ∇∇∇u − f ) − ∇∇∇ ·σσσ = 0 on Ω, (2.1)

∇∇∇ · u = 0 on Ω. (2.2)

Here u, f and σσσ denote the fluid velocity, body force per unit volume and the Cauchy
stress tensor, respectively. The stress is the sum of its isotropic and deviatoric parts:

σσσ = −p I + T , T = 2μεεε(u), εεε(u) = 1
2 ((∇∇∇u) + (∇∇∇u)T ), (2.3)

where p, I , μ and εεε are the pressure, identity tensor, dynamic viscosity of the fluid
and strain rate tensor, respectively. Both, the Dirichlet- and Neumann-type boundary
conditions are accounted for and are represented as

u = g on Γg, n ·σσσ = h on Γh, (2.4)

respectively, where Γg and Γh are the complementary subsets of the boundary Γ ; n is
its unit normal vector; and h is the surface traction vector. In the present simulations
we have mainly employed two different kinds of boundary conditions on the lateral
walls of the domain, namely the slip and towing tank boundary conditions (see
figure 2). In the slip boundary condition, the component of the velocity normal to and
the component of the surface traction vector along the upper and lower boundaries
are prescribed a zero value. In contrast, the towing tank boundary condition involves
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Slip boundary condition: σ12 = 0, u2 = 0

Towing tank boundary condition: u1 = U, u2 = 0
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Figure 2. Problem definition for flow past a stationary circular cylinder.

the free-stream speed condition on the lateral boundaries. The no-slip boundary
condition is applied on the surface of the cylinder. The free-stream condition on
the velocity is prescribed on the upstream boundary. To enable comparison with
the results of Sahin & Owens (2004) for the confined flow with high blockage (up
to B =0.90), a third type of boundary condition that involves the no-slip sidewalls
and parabolic inlet is employed. For all the three types of boundary conditions, a
Neumann condition for the velocity is specified at the downstream boundary that
corresponds to the stress-free condition.

3. The finite-element formulation
The spatial domain Ω is discretized into the non-overlapping subdomains Ωe,

e =1, 2, . . . , nel , where nel is the number of elements. Let Sh
u and Sh

p be the finite-
dimensional trial function spaces for the velocity and pressure, respectively, and the
corresponding weighting function spaces are denoted by Vh

u and Vh
p . These function

spaces are defined as

Sh
u = {uh|uh ∈ [H 1h(Ω)]2, uh .

= gh on Γg}, (3.1)

Vh
u = {wh|wh ∈ [H 1h(Ω)]2, wh .

= 0 on Γg}, (3.2)

Sh
p = Vh

p = {qh|qh ∈ H 1h(Ω)}, (3.3)

where H 1h = {φh|φh ∈ C0(Ω), φh ∈ P 1∀Ωe}. (3.4)

Here, P 1 represent the first-degree polynomials. The stabilized finite-element
formulation of the conservation equations (2.1) and (2.2) is written as follows: find
uh ∈ Sh

u and ph ∈ Sh
p such that ∀wh ∈ Vh

u, qh ∈ Vh
p ,∫

Ω

wh · ρ(uh · ∇∇∇uh − f ) dΩ +

∫
Ω

εεε(wh) : σσσ (ph, uh) dΩ +

∫
Ω

qh∇∇∇ · uh dΩ

+

nel∑
e=1

∫
Ωe

1

ρ
(τSUPGρuh · ∇∇∇wh + τPSPG∇∇∇qh).[ρ(uh · ∇∇∇uh − f ) − ∇∇∇ ·σσσ (ph, uh)] dΩe

+

nel∑
e=1

∫
Ωe

δ∇∇∇ · whρ∇∇∇ · uh dΩe =

∫
Γh

wh · hh dΓ. (3.5)
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In the variational formulation given by (3.5), the first three terms and the right-hand
side constitute the Galerkin formulation of the problem. The first series of element
level integrals are the SUPG and PSPG stabilization terms added to the variational
formulations of the momentum and the continuity equations, respectively. In the
current formulation, τSUPG and τPSPG are equal and are expressed as

τSUPG = τPSPG =

[(
2‖uh‖

h

)2

+

(
12ν

h2

)2
]−0.5

, (3.6)

where ν is the kinematic viscosity of the fluid and h is the characteristic element
length. Mittal (2000) conducted a systematic numerical study to investigate the effect
of the high aspect ratio elements on the performance of the finite-element formulation
for three commonly used definitions of h. In this work we use the definition based on
the minimum edge length of an element.

The second series of the element level integrals are added for numerical stability at
high Reynolds numbers. This is a least squares term based on the continuity equation.
The stabilization parameter δ is defined as

δ =
h

2
|uh|z, (3.7)

with the following definition of z:

z =

{(
Reu

3

)
for Reu � 3,

1 for Reu > 3,
(3.8)

where Reu is the local or element Reynolds number. More details of the finite-element
formulation can be found in Tezduyar et al. (1992). The SUPG-based finite-element
formulation has been very effectively used earlier to predict the flow past a circular
cylinder, including the case of free vibrations (Singh & Mittal 2005; Kumar & Mittal
2006a,b; Prasanth et al. 2006).

4. Problem set-up
The circular cylinder is placed in a computational domain whose outside boundary

is a rectangle (see figure 2). The origin of the Cartesian coordinate system coincides
with the centre of the cylinder. The positive x1-axis is in the downstream direction. The
slip and towing tank boundary conditions associated with the present simulations are
also shown in the figure. The slip boundary condition does not represent a physical
situation but is very popular in the numerical community. The lateral boundaries in
this case are forced to be streamlines such that the shear stress along them is zero. The
towing tank boundary condition is motivated by the conditions on the lateral walls
of a tow tank when a model is towed through it. For the case with no-slip sidewalls
the velocity is set to zero at the lateral boundaries, and a parabolic velocity profile
is specified at the inlet: u1 = 1 − (2 x2/H )2, u2 = 0, where x2 is the vertical distance
measured from the centre of the cylinder. The Reynolds number for this flow is based
on the centreline speed.

The blockage is expressed as B = D/H . Throughout this work, the terminology
‘domain size’ represents the reciprocal of the blockage, i.e. the H/D ratio. In all
the simulations, the upstream and downstream boundaries are located sufficiently far
from the cylinder and have no significant influence on the overall flow field. These
distances are Lu = 50D and Ld =100D, respectively, measured from the centre of
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(a) (b)

Figure 3. Steady flow past a circular cylinder: (a) finite-element mesh corresponding to
B = 0.01, consists of 93 488 nodes and 92 800 bilinear quadrilateral elements; (b) close-up view
of the central square block containing the cylinder.

the cylinder (see § 6.2). The domain width H varies between 1.11D and 8000D. This
results in the blockage varying between 0.000125 and 0.90. The length and velocity
scales are normalized by the cylinder radius and free-stream speed U respectively. The
Reynolds number, Re ( = UD/ν), is based on the cylinder diameter and free-stream
speed for the slip and towing tank boundary conditions.

5. The finite-element mesh
The non-uniform finite-element mesh consisting of the bilinear quadrilateral

elements and a close-up view of the mesh near the cylinder are shown in figure 3.
This mesh corresponds to B = 0.01. The mesh is symmetric about the x1-axis and
has been constructed by combining five blocks: a central square block containing
the cylinder and four neighbouring rectangular blocks located at the left, right, top
and bottom of the central block. With the exception of the central block, each block
consists of a Cartesian non-uniform structured mesh. The central block is constructed
of non-Cartesian structured mesh made of two families of non-uniformly spaced
radial and circumferential grid lines. This block is designed to have more nodes in
the wake region along the circumferential direction such that the element size in
the circumferential direction increases uniformly as one moves from the rear to the
front portion of the cylinder. Close to the base point, the angle between two radial
lines ≈ 0.18◦, while the corresponding angle near the front stagnation point ≈ 1.90◦.
The radial thickness of the first layer of elements located on the cylinder surface hr

1

equals 0.0005D for all the meshes employed. Within the central block, the element size
increases non-uniformly in the radial direction. The number of nodes on the cylinder
surface Nt is 368 for all the meshes employed. The meshes for B � 0.70 contain all
the five constituent blocks. For very high blockage (B > 0.70), only the central, left
and right blocks constitute the meshes; the upper and lower blocks are dropped.

6. Validation of the method and convergence of the results
6.1. Comparison with earlier results

The finite-element formulation and its implementation has been validated by
comparing the pressure distribution on the surface of the cylinder at Re =15, 30,
36 and 40 and the total drag coefficient Cd at Re = 40 at very low as well as large
blockages with those reported by the earlier studies. The pressure coefficient Cp
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Figure 4. Steady flow past a circular cylinder: comparison of predicted Cp with data from
literature. (a) Cp–θ plot at Re = 15; (b) Cp–θ plot at Re = 30; (c) Cp–θ plot at Re = 36; (d )
Cp–θ plot at Re =40.

computed with the slip boundary condition is shown in figure 4. As expected, the
forward stagnation point is the maximum pressure point, and the corresponding
pressure coefficient Cp0 is greater than unity in all cases. For constant blockage,
Cp0 decreases with increasing Re and approaches unity, while the point of minimum
pressure moves upstream, and the minimum pressure increases. This can be observed
from figure 4(a,b) for B =0.015.

Figure 4(a) compares the calculated Cp at Re = 15 and B =0.015 with those
obtained by Hamielec & Raal (1969) at the same Reynolds number and blockage. The
comparison reveals excellent agreement. Figure 4(b) demonstrates that the predicted
surface pressure distribution at Re =30 is very close to the results of Hamielec &
Raal (1969) for B = 0.015 and Homann (1936) for B =0.05. Close agreement between
the present results with those of Thom (1933) at Re = 36 is seen from figure 4(c). The
predicted values of Cp at Re = 40 are compared with the experimental data of Grove
et al. (1964) as shown in figure 4(d ). A satisfactory match between the present and
earlier results is observed.

At Re = 40 and B = 0.000125, the present calculations result in Cpb = −0.4782.
Following an artificial stabilization of the wake by a splitter plate, Grove et al.
(1964) obtained Cpb = −0.45 for the steady flow condition. They concluded that this
value remains constant for 25 � Re � 177. Fornberg (1980) estimated Cpb = −0.46 for
Re =40. The recent study by Posdziech & Grundmann (2007) reported Cpb = −0.4736
at Re = 40 and B = 0.000125. The values of Cd obtained from the present simulations
at B = 0.000125 are compared with the experimental and numerical data from the
literature at Re =40 in table 2. For this value of low blockage, the Cd predicted
using, both, the slip and towing tank boundary conditions is the same. The predicted
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Figure 5. Steady flow at Re = 40 past a circular cylinder with no-slip sidewalls and parabolic
inflow: variation of Cd with blockage. The numerical results from Sahin & Owens (2004) are
also shown. The Cd axis in the inset is in the linear scale.

Studies B Cd

Kawaguti (1953) 1.618
Tritton (1959) 1.58
Thoman & Szewczyk (1969) 1.572
Takami & Keller (1969) 0.059 1.5359
Son & Hanratty (1969) 1.51
Dennis & Chang (1970) 1.522
Fornberg (1980) 1.4980
Henderson (1995) 0.0178 1.54
Posdziech & Grundmann (2007) 0.000125 1.4942
Present 0.000125 1.5093

Table 2. Steady flow at Re = 40 past a circular cylinder: Cd from the present study and the
earlier efforts.

Cd lies in the range of the values reported by the earlier efforts. It is in very good
agreement with the more recent values reported by Fornberg (1980) and Posdziech &
Grundmann (2007).

For large blockages (0.10 � B � 0.90), Cd obtained from the present simulations
using the no-slip sidewalls and those reported by Sahin & Owens (2004) at Re = 40
are compared in figure 5. Excellent agreement is observed for the entire range of
blockage. As is shown in the inset, the present results predict a non-monotonic
variation of Cd between B = 0.005 and B = 0.10.

6.2. Streamwise extent of the domain and mesh convergence

To study the influence of the location of the upstream and downstream boundaries on
the characteristics of the flow, computations are carried out with two meshes L1 and
L2 with different streamwise extents. The blockage for both the meshes is B =0.01,
and the spatial resolution for the two cases is kept identical.The details of the two
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Mesh Lu Ld Nodes Elements

L1 50D 100D 93 488 92 800
L2 100D 200D 121 780 120 976

Table 3. Steady flow past a circular cylinder: details of the various meshes employed to
study the effect of the streamwise location of the inflow and outflow boundaries. The other
parameters for the meshes are hr

1 = 0.001, Nt = 368 and B = 0.01.

L θs Cd Cp0 −Cpb

Mesh Re = 7 40 7 40 7 40 7 40 7 40 Res

L1 0.0926 4.4995 14.62 53.63 3.3523 1.5121 1.6901 1.1626 0.7843 0.4758 6.28
L2 0.0909 4.4935 14.49 53.61 3.3428 1.5093 1.6835 1.1591 0.7832 0.4758 6.29

Table 4. Steady flow past a circular cylinder: effect of the streamwise location of the outflow
and inflow boundaries on the characteristics of the flow. The results correspond to the slip
boundary condition and B = 0.01.

Mesh Nodes Elements hr
1 Nt

M1 47 498 47 000 0.01 236
M2 93 488 92 800 0.001 368
M3 184 416 183 424 0.001 564

Table 5. Steady flow past a circular cylinder: description of the various meshes employed for
the grid convergence study. The other parameters for the meshes are Lu = 50D, Ld = 100D
and B = 0.01.

meshes are given in table 3. The streamwise location of the upstream and downstream
boundaries of mesh L2 is twice that of those of L1. The results for various Re with
the two meshes are given in table 4. The difference in the L and Res predicted by
the two meshes are 1.87 % and 0.16 %, respectively. The results from the two sets
of computations for the other parameters are very similar. This demonstrates the
adequacy of the streamwise extent of mesh L1. Therefore, the computations in this
paper are carried out for Lu = 50D and Ld = 100D.

To check for the grid independence, several meshes with increasing refinement are
utilized to compute the Re = 7 and 40 flows for B = 0.01 blockage, using the slip
boundary condition. These meshes have a streamwise extent equal to that of L1.
Starting from a coarse mesh, the subsequent fine meshes are constructed by uniform
global refinement. Out of the many meshes studied, table 5 lists the various parameters
for meshes M1, M2 and M3. The spatial resolution increases from M1 to M3 so that
the number of nodes almost doubles in each successive mesh. Mesh M2 is the same as
mesh L1 described in the previous study. The results of the mesh convergence study
for M1 through M3 are presented in table 6. It is found that the flow parameters
for M2 and M3 are virtually identical. Based on the grid independence test shown in
table 6, mesh M2 with 93 488 nodes and 92 800 elements is chosen as the reference
mesh corresponding to B = 0.01.

The computations involving different blockages, B � 0.20, employ meshes that differ
on the number of elements only in the upper and lower blocks (see § 5). The total
numbers of nodes and elements in the central, left and right blocks have constant
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L θs Cd Cp0 −Cpb

Mesh Re = 7 40 7 40 7 40 7 40 7 40 Res

M1 0.0924 4.4999 13.37 53.12 3.3511 1.5100 1.6922 1.1642 0.7841 0.4748 6.32
M2 0.0926 4.4995 14.62 53.63 3.3523 1.5121 1.6901 1.1626 0.7843 0.4758 6.28
M3 0.0929 4.5025 14.64 53.64 3.3519 1.5120 1.6892 1.1623 0.7847 0.4758 6.28

Table 6. Steady flow past a circular cylinder at B = 0.01, using the slip boundary condition:
flow parameters for the three meshes for grid convergence study.

values of 68 768 and 68 160, respectively. The central block is a square of edge 4D
and contains 29 808 nodes and 29 440 elements. For 0.30 � B � 0.80 the central block
is reduced to a square of edge length 1.25D. It contains 24 656 nodes and 24 288
elements, while the sums of nodes and elements in the central, left and right blocks
equal 91 302 and 90 512, respectively. For B = 0.90 the edge length of the central block
further reduces to 1.11D and consists of 23 184 nodes and 22 816 elements. All the
meshes have been designed to maintain the same mesh density for all the blockages
as far as possible.

7. Results
The key non-dimensional parameters governing the steady laminar flow around

a stationary circular cylinder are the Reynolds number and blockage. The results
are presented for the computations for 6 � Re � 40 and a wide range of blockage
(0.000125 � B � 0.80) with both the slip and towing tank boundary conditions. The
Re = 40 and 0.005 � B � 0.90 results for the bubble parameters using the no-slip
sidewalls are also shown. It is found that the results for B = 0.005 are devoid of the
blockage effect and represent solutions for the unbounded flow.

The element level matrix and vector entries have been computed by employing
the 2 points×2 points Gauss–Legendre quadrature formula. All the computations
are carried out on a computer with AMD Opteron processor with four CPUs of
2.4 GHz clock speed. Double-precision arithmetic is used for all the calculations.
The Re = 40 flow computed on a mesh with 93 488 nodes and 92 800 elements
(B = 0.01) requires 582 MB of RAM and, approximately, 4 hours of CPU time
when a direct solver is utilized to solve the algebraic equation system resulting from
the finite element discretization. In contrast, with the matrix-free implementation
of the generalized minimal residual (GMRES) method of Saad & Schultz (1986),
the memory requirement reduces to a mere 34 MB, and the solution time is 1.24
hours. The dimension of the Krylov subspace is 30, and a diagonal preconditioner is
employed to accelerate the convergence rate of GMRES.

7.1. Development of the steady separation bubble with Re

In order to demonstrate the growth of the steady separation bubble with Re, contours
of the streamwise component of the velocity (for 6.3 � Re � 6.5) and streamfunction
(for 6.3 � Re � 40) in the wake are presented in figure 6. The results in these figures
are for B = 0.01 and the slip boundary condition. The calculations show that the
separation bubble first appears at Re = 6.28. At Re =6.3, the bubble length is of
the order of the element thickness on the cylinder surface in the radial direction.
As expected, the contours of ψ are symmetric about the x1-axis. The enlargement
of the separation bubble with increasing Re is clearly seen from these images. The
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Re = 6.3 Re = 6.4 Re = 6.5

Re = 8 Re = 15

Re = 40Re = 30

Re = 6.3 Re = 6.4 Re = 6.5

Figure 6. Steady flow past a circular cylinder at B = 0.01 and using the slip boundary
condition: (a) Re = 6.3–6.5, u1 contours, (b) Re = 6.3–6.5, ψ contours and (c) Re = 8 − 40, ψ
contours, showing the development of the separation bubble with Re.

(a)

(b) (c)

Re = 40, slip BC Re = 40, towing tank BC

Re = 40, no–slip BC

Figure 7. Steady flow at Re = 40 past a circular cylinder at B = 0.80, using the (a) no-slip,
(b) slip and (c) towing tank boundary conditions: contours of ψ for the separation bubble.

separation bubble for large blockage (B = 0.80) is shown in figure 7 for the Re =40
flow with various boundary conditions. The very significant effect of the boundary
conditions on the length of the eddies for high blockage is evident from this figure.

7.2. Variation of L and θs with Re

Figure 8 shows the variation of the bubble length with Re for B = 0.04, 0.11 and 0.20.
The results have been computed with the towing tank boundary condition. The value
of L is estimated by locating the point along the wake centreline at which u1 goes to
zero. For constant blockage, it is observed that the bubble elongates approximately
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Figure 8. Steady flow past a circular cylinder, using the towing tank boundary condition for
Re = 6.5–40: comparison of the bubble length, L, with the experimental and numerical data
from the literature. The abbreviations used are TA, Taneda (1956); GR, Grove et al. (1964);
AC, Acrivos et al. (1968); T-K, Takami & Keller (1969); C-B, Coutanceau & Bouard (1977).

linearly with Re. This is in agreement with the earlier observations. The best linear fit,
using the least squares approximation, is also shown in the figure. The best linear fits
for B = 0.000125, 0.005, 0.01 and 0.04 overlap, and for clarity only the B = 0.04 case
is shown. The linearity of L with Re is utilized in this work to determine Res for each
value of blockage (see § 7.4). Except at Re = 40, the predicted eddy length at B = 0.04
exhibits satisfactory agreement with those from Takami & Keller (1969) at B = 0.059.
The data from Taneda (1956) for B = 0.03, Acrivos et al. (1968) for B = 0.05 and
Coutanceau & Bouard (1977) for B = 0.024 and 0.07 lie within our data spectrum
for the range of B =0.04–0.20. For B = 0.025, Acrivos et al. (1968) predicted larger
bubble compared to the present predictions. The eddy lengths from the study by
Grove et al. (1964) for B = 0.10 and 0.20 are quite different from the ones predicted
by everyone else. It is found that both the slip and towing tank boundary conditions
for 0.000125 � B � 0.80 lead to linear variation of the eddy length with Re.

The slope of the L–Re profiles obtained by using the slip and towing tank boundary
conditions are listed in table 7. It is seen that both the boundary conditions result
in nearly the same slope for 0.000125 � B � 0.04. The effect of the blockage becomes
important for B > 0.04. The difference in the slope obtained by using the slip and
towing tank boundary conditions increases with increasing blockage. Also, a key
observation is that using the slip boundary condition the slope decreases up to
B = 0.30 and then increases. In contrast, the towing tank boundary condition predicts
monotonic decrease of the slope with increasing B .

The least squares fit for the L–Re relationship provides the following empirical
equation for the prediction of the bubble length concerning the unbounded flow
(B = 0.005):

L = −0.847 + 0.1336 Re for Res <Re � 40. (7.1)

The root mean square (r.m.s.) error in the curve fit ≈ 0.0002. In comparison, Sobey
(2000) has proposed the following empirical equation for the bubble length in the
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Slope of L versus Slope of L versus
Re with the slip Re with the towing tank

B boundary condition boundary condition

0.000125 0.1336 0.1336
0.005 0.1336 0.1336
0.01 0.1336 0.1336
0.04 0.1331 0.1328
0.07 0.1304 0.1291
0.11 0.1245 0.1214
0.15 0.1179 0.1128
0.20 0.1105 0.1022
0.30 0.1019 0.0909
0.40 0.1051 0.0852
0.50 0.1214 0.0787
0.60 0.1432 0.0705
0.70 0.1595 0.0619
0.80 0.1711 0.0539

Table 7. Steady flow past a circular cylinder: comparison of the slope of L−Re profiles
obtained by using the slip and towing tank boundary conditions between B = 0.000125 and
B = 0.80.

steady unbounded flow:

L = −0.506 + 0.115 Re. (7.2)

For the steady flow, the separation points can be identified by the vanishing of
the vorticity and shear stress on the cylinder surface. We have checked, from our
implementations, both methods result in identical values of the separation angle.
Figure 9 shows the variation of θs with Re for various blockages, using the towing
tank boundary condition. It is observed that θs increases with increasing Re. However,
the variation is not linear. A steep rise in θs with Re is observed at the onset of the
separation, and then the increase is much smaller. For B � 0.11, the θs–Re plots are
virtually identical, implying minor influence of B on θs . However, beyond B = 0.11,
θs decreases with increasing B for each Re. The predicted θs at low blockage match
very well with the numerical data of Takami & Keller (1969) and those obtained
from the empirical equation proposed by Wu et al. (2004). The present predictions
of θs for Re � 20 are also very close to those of Coutanceau & Bouard (1977) at
the blockage of 0.07. A few discrepancies with the data points of Thom (1933) for
B = 0.10, Homann (1936) for B =0.10 and Coutanceau & Bouard (1977) for B = 0.12
are observed.

Wu et al. (2004) proposed the following empirical equation for the determination
of θs:

θs = 78.5 − 155.2 Re−0.5 for 10 � Re � 200. (7.3)

Figure 10 shows the variation of θs with Re−0.5 for 10 � Re � 40 and 0.005 � B � 0.20
for the present data. It is observed that for both types of boundary conditions, these
profiles are linear for all blockages. Further, they are virtually identical for B � 0.11.
The empirical equation for θs for the unbounded flow obtained by the least squares
curve fit is

θs = 77.66 − 152.65 Re−0.5 for 10 � Re � 40. (7.4)
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Figure 9. Steady flow past a circular cylinder, using the towing tank boundary condition for
Re = 6.5–40: comparison of the separation angle, θs , with the experimental and numerical
data from the literature.
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Figure 10. Steady flow past a circular cylinder: variation of θs with Re−0.5 for 10 � Re � 40
and 0.005 � B � 0.20 for the (a) slip and (b) towing tank boundary conditions.

The associated r.m.s. error for this fit is 0.04. This equation is in very good agreement
with (7.3) proposed by Wu et al. (2004).

The L–Re and θs–Re curves for the unbounded flow (B = 0), obtained via the
least squares curve fit, are shown in figure 11. The data points for the curve fit
are determined via Richardson’s extrapolation of order two. The computed results
for B = 0.005 and 0.01 are utilized for this purpose. The empirical equations thus
obtained are given by

L = −0.848 + 0.1336 Re for Res < Re � 40, (7.5)

θs = 77.66 − 152.70 Re−0.5 for 10 � Re � 40 (7.6)
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Figure 11. Steady flow past a circular cylinder: (a) L–Re and (b) θs–Re curves for the
unbounded flow (B = 0) obtained by fitting the extrapolated data.
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Figure 12. Steady flow past a circular cylinder, using the towing tank boundary condition
for 0.005 � B � 0.80: variation of the (a) bubble length and (b) separation angle with Re.

These equations are very similar to (7.1) and (7.4) obtained via curve fit through
the computed results. The variation of L and θs with Re, for the range of blockage
studied in this effort, is shown in figure 12.

7.3. Effect of the blockage and boundary conditions on L and θs

The variation of L and θs with the blockage has been investigated for 0.005 � B � 0.80
for both the slip and towing tank boundary conditions. The results are presented in
figure 13 for Re =7, 20, 30 and 40. For B � 0.01, L and θs are free from the blockage
effect. Between B = 0.01 and B = 0.15, a non-monotonic variation of L and θs with
B is observed. We refer to this behaviour as the first non-monotonic variation. The
values of L and θs increase with the blockage for small values of B and then decrease.
The blockage at which L and θs achieve the maximum values is a function of Re and
the boundary condition. We refer to this value as the critical blockage. For instance
at Re = 7 the maximum is achieved at B =0.07 and 0.11 with the towing tank and slip
boundary conditions, respectively. As Re increases, the critical blockage decreases.
Fornberg (1991) investigated the steady wake for flow past a cylinder for Re � 800.
Even though it was not explicitly pointed out, careful observation of figure 11 in
his paper shows non-monotonic variation of the bubble length with the blockage.
For 0.01 � B � 0.04, the slip and towing tank boundary conditions predict identical
increase of L and θs for all Re considered. For all blockages beyond B = 0.04, L and
θs obtained with the slip boundary condition are higher than those obtained with
the towing tank boundary condition. In general, for large B compared to the towing
tank boundary condition, slip boundary condition results in values that are closer
to the ones for the unbounded flow (for B = 0.005). For B > 0.15, the towing tank
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Figure 13. Steady flow past a circular cylinder for 7 � Re � 40 and 0.005 � B � 0.80: variation
of L and θs with B . Also shown are the results from the earlier studies. BC: boundary condition.

boundary condition predicts monotonic decrease of L and θs for all Re. However,
the slip boundary condition leads to a much more complex variation that depends
on Re. For Re � 30 and B � 0.30, L and θs are found to increase with B leading
to a second regime of non-monotonicity. At very low Re, say Re = 7, the second
regime of non-monotonicity occurs at relatively low blockage. Also, a regime of
third non-monotonicity is observed for large blockage in the variation of eddy length
with B .
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Figure 14. Re = 40 steady flow past a circular cylinder for 0.005 � B � 0.90 using the no-slip
sidewalls: variation of L and θs with B .
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Figure 15. Steady flow at Re = 20 past a circular cylinder: variation of the x1 component
of velocity with x2 at x1 = 0 for the slip and towing tank boundary conditions for (a)
0.04 � B � 0.30 and (b) 0.30 � B � 0.80. The surface of the cylinder is shown in solid line. In
(b), S and T denote the slip and towing tank boundary conditions, respectively. BC: boundary
condition.

At Re = 20 and 30, a satisfactory match is found with the results of Takami & Keller
(1969) for B < 0.07. However, significant discrepancies are found with the results of
Coutanceau & Bouard (1977) for relatively higher blockage. In the experiments of
Coutanceau & Bouard (1977) the blockage, B , is based on the diameter of the tank. In
the present computations, the outer domain is a rectangle. With respect to the present
definition of the blockage, the effective blockage in the experiments of Coutanceau &
Bouard (1977) is, therefore, higher than what they report. This, then, might explain
the discrepancies between their results and the present results.

The variation of L and θs with B at Re = 40 using the no-slip sidewalls is shown
in figure 14. The variation is similar to that for the towing tank boundary condition,
i.e. non-monotonicity at low blockage, and decrease in the bubble parameters with
increasing B . Figure 15 shows the cross-flow variation of the streamwise component
of the velocity at x1 = 0 for the Re = 20 flow at low as well as high blockages for the
two types of boundary conditions. Compared to the unbounded flow, for B � 0.20,
the presence of the lateral walls leads to an overall acceleration of the flow. The
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Figure 16. Steady flow at Re = 20 past a circular cylinder: vorticity fields obtained with the
(a) slip and (b) towing tank boundary conditions for 0.04 � B � 0.80. The broken lines denote
negative while the solid lines represent positive values of the vorticity. For B = 0.50 and 0.80,
the horizontal lines near the cylinder represent the sidewalls.

specification of the free-stream speed at the lateral walls for flow in the towing
tank boundary condition leads to an additional flow acceleration. For low blockage
(B = 0.04), the slip and towing tank boundary conditions lead to virtually the same
velocity profiles. However, for B � 0.20 the towing tank boundary condition leads
to significantly larger acceleration as seen in figure 15. This results in delayed flow
separation for the towing tank boundary condition and therefore a shorter bubble.

To further investigate the effect of the blockage and boundary conditions, we study
the vorticity fields of the Re = 20 flow for certain values of B . The vorticity fields for
the slip and towing tank boundary conditions are shown in figure 16, while figure 17
shows the vorticity distribution on the cylinder surface. For low blockage (B =0.04)
the vorticity fields obtained with both the boundary conditions are virtually identical.
However, for B � 0.20 the vorticity is generated at the sidewalls due to the imposition
of the free-stream speed for the towing tank boundary condition (figure 16b).
The strength of the wall-generated vorticity increases with increasing blockage. This
interferes with the advection of the vorticity generated on the surface of the cylinder
and leads to the delay of flow separation. This is reflected by the downstream
movement of the zero-vorticity point as seen from the inset of figure 17(b). In contrast,
the slip boundary condition results in very similar vorticity fields for B = 0.04 and 0.20
(figure 16a). For B � 0.50, the shortening of the streamwise extent of the vorticity
contours is associated with the upstream movement of the zero-vorticity point. The
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condition.

reversal of the movement of the zero-vorticity point for B � 0.50 is clearly seen from
the inset of figure 17(a). The location of the zero-vorticity point is a measure of the
separation angle (see § 7.2).

The adverse pressure gradient plays a major role in the flow separation. To
investigate the possible cause of the non-monotonic variation of L and θs with
the blockage, we study the adverse pressure gradient on the surface of the cylinder.
Figure 18 shows, for various blockages, the location on the cylinder surface at
which a pressure gradient corresponding to ∂Cp/∂θ = 0.05 occur. Two representative
Reynolds numbers are chosen: Re = 20 and 40. For both Re it is seen that the
locations corresponding to ∂Cp/∂θ = 0.05 show non-monotonic variation with B .
This, therefore, leads to non-monotonic variation of L and θs with the blockage.

7.4. Res for the confined and unbounded flow

It was shown in § 7.2 (figure 8) that the eddy length varies linearly with Re. We
utilize this variation to estimate Res for each blockage. Figure 19 shows the variation
of Res with H/D ( = 1/B) for the slip as well as towing tank boundary conditions.
The variation of Res with H/D for the two boundary conditions is quite different
for H/D < 25, i.e. B > 0.04. While both the boundary conditions result in a non-
monotonic variation of Res with H/D, the towing tank boundary condition predicts
higher values of Res . This can be clearly seen in figure 19. The present results with the
towing tank boundary condition predict a decrease in Res with H/D for H/D < 14.28
and an increase thereafter. This is the first time that the non-monotonic variation of
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the boundary conditions. BC: boundary condition.

Res with the domain size is being reported. Also shown in figure 19 is the comparison
of the present predictions using the towing tank boundary condition with those of
Coutanceau & Bouard (1977) and Chen (2000). The present results show considerable
divergence with those of Coutanceau & Bouard (1977) but display excellent agreement
with the more recent results of Chen (2000) for 1.43 � H/D � 10, i.e. 0.10 � B � 0.70.
The discrepancies with Coutanceau & Bouard (1977) seem to stem from the different
definition of the blockage used in the two cases (see § 7.3).

The effect of the boundary conditions, on prediction of Res , is insignificant for
H/D � 25 (B � 0.04). The blockage effect becomes negligible for B � 0.01. Figure 19
can be utilized to estimate Res for the unbounded flow. It is found to be Res ≈ 6.29.
Richardson’s extrapolation of order two and the values of Res at B = 0.005 and 0.01
are utilized to predict Res for the unbounded flow (B =0). This method also results in
Res ≈ 6.29. From table 1 it is seen that this value is close to the prediction of Dennis
& Chang (1970). Another observation that can be made from figure 19 is that for
high blockage (H/D < 5.88), compared to the towing tank boundary condition, the
slip boundary condition predicts Res that is closer to that for the unbounded flow.

Srinivasan (2006) suggested an analytical criterion to determine Res for the flow
past a circular cylinder from the velocity field. It was shown that for Re = Res ,
∂2u1/∂x2

1 approaches zero at the base/rear stagnation point. Figure 20 shows the
variation of ∂2u1/∂x2

1 at the base point of the cylinder for various Re and B . As
shown by Srinivasan (2006), a linear variation of ∂2u1/∂x2

1 with Re is observed for
all B and both the boundary conditions.

Listed in table 8 is the prediction of Res for various B and boundary conditions
from the vanishing of ∂2u1/∂x2

1 and the eddy length, L. Very good agreement between
the predictions from the two criteria is observed. Furthermore, the non-monotonic
variation of Res with B is exhibited by both the predictions. Overall, the maximum
difference between the two sets of predictions is less than 1%.
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Slip boundary condition Towing tank boundary condition

B Res(L) Res(∂
2u1/∂x2

1 ) Res(L) Res(∂
2u1/∂x2

1 )

0.000125 6.29 6.31 6.29 6.31
0.005 6.29 6.31 6.29 6.31
0.0066 6.29 6.31 6.29 6.31
0.01 6.28 6.30 6.28 6.30
0.04 6.15 6.17 6.15 6.17
0.07 6.08 6.10 6.11 6.13
0.11 6.06 6.08 6.20 6.22
0.15 6.07 6.09 6.40 6.43
0.20 6.05 6.07 6.77 6.80
0.30 5.83 5.87 7.80 7.83
0.40 5.64 5.69 8.95 8.98
0.50 5.56 5.59 10.10 10.12
0.60 5.51 5.53 11.19 11.22
0.70 5.48 5.49 12.32 12.37
0.80 5.46 5.46 13.47 13.53

Table 8. Steady flow past a circular cylinder for 0.000125 � B � 0.80: Res obtained for various
B and the slip and towing tank boundary conditions; Res(L) and Res(∂

2u1/∂x2
1 ) represent

the separation Reynolds numbers obtained using the eddy length and ∂2u1/∂x2
1 = 0 criteria,

respectively.
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Figure 20. Steady flow past a circular cylinder: variation of ∂2u1/∂x2
1 at the base point with

Re for various B with the (a), (c) slip and (b), (d ) towing tank boundary conditions.

7.5. Effect of the blockage and boundary conditions on Cd and –Cpb

Figure 21 shows the variation of Cd with the domain size for Re = 10, 20 and 40.
At each blockage, compared to the slip, towing tank boundary condition results in
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Figure 21. Steady flow past a circular cylinder for 1.25 � H/D � 8000: variation of Cd with
the domain size for various Re. For the slip boundary condition: +, Re =10; ×, Re = 20; �,
Re = 40. For the towing tank boundary condition: �, Re = 10; �, Re =20; �, Re = 40.

a higher value. With increasing B , Cd displays rapid and monotonic increase. The
sensitivity to the boundary conditions disappears for B < 0.04. The effect of the
blockage is found to be negligible for B � 0.01. The asymptotic variation of Cd with
H/D can be utilized to estimate the value for the unbounded flow. Unlike the no-slip
sidewalls (see figure 5), the slip and towing tank boundary conditions do not predict
any non-monotonicity of Cd with B at low B .

Figure 22 depicts the variation of the base suction, –Cpb, with the domain size
for various Re and boundary conditions. As is seen for Cd , the variation of –Cpb

is independent of the blockage for B � 0.01. For H/D < 100, –Cpb predicted by the
slip boundary condition exceeds the corresponding prediction by the towing tank
boundary condition for all Re considered. With increasing domain size, the slip
boundary condition predicts a monotonic decrease in –Cpb for all Re. In contrast,
the towing tank boundary condition predicts a non-monotonic variation of –Cpb with
H/D at Re = 10 and 20. A monotonic decrease in –Cpb with H/D is observed at
Re = 40. For a given domain size, the slip boundary condition predicts a monotonic
decrease in –Cpb for H/D � 5 and a monotonic increase for H/D � 2 with increasing
Re. In contrast, a non-monotonic variation of –Cpb with Re is observed with the
towing tank boundary condition for H/D � 5.

7.6. Variation of the parameters with Re

The variation of Cd and –Cpb with Re for B = 0.01 are compared with the results
of Henderson (1995) and Posdziech & Grundmann (2007) in figure 23. The blockage
B = 0.01 is low enough to give results for the unbounded flow. In addition, it is found
that at B = 0.01 the results are independent of the boundary conditions. It is seen that
the present results are in very good agreement with those of Posdziech & Grundmann
(2007). Discrepancies are observed with the results from Henderson (1995) for –Cpb

variation, while surprisingly, the Cd values are in very good agreement.
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Figure 22. Steady flow past a circular cylinder for 1.25 � H/D � 8000: variation of –Cpb with
the domain size for various Re. For the slip boundary condition: +, Re = 10; ×, Re = 20; 
,
Re = 40. For the towing tank boundary condition: �, Re = 10; �, Re = 20; ◦, Re = 40.
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Figure 23. Steady flow at B = 0.01 past a circular cylinder: variation of (a) Cd and (b) –Cpb

with Re. Also shown are the results from Henderson (1995) and Posdziech & Grundmann
(2007).

Smith (1981) proposed a Cd–Re variation for the steady flow:

Cd = 0.50 (1 + 7.61 Re−0.5). (7.7)

Following the same lead, figure 24 shows the variation of Cd with Re−0.5 for Re � 15.
A linear curve fit is obtained for both the boundary conditions. The curve fit for
B = 0.005 is found to be independent of the boundary conditions and is given as

Cd = 0.26 + 7.89 Re−0.5 for 15 � Re � 40. (7.8)

By using the least squares curve fit, empirical equations are obtained for the pressure
and viscous components of Cd . For the unbounded flow, the variation of Cdp and Cdv

with Re is given as

Cdp = 0.583 + 4.311 Re−0.64 for 6 � Re � 40, (7.9)

Cdv = −0.016 + 4.938 Re−0.60 for 6 � Re � 40. (7.10)



114 S. Sen, S. Mittal and G. Biswas

1.4

2.0

2.6

3.2

3.8

4.4

0.14 0.16 0.18 0.20 0.22 0.24 0.26

Cd

Re– 0.5 Re– 0.5

B = 0.005
0.01
0.04
0.07
0.11
0.15
0.20

1.4

2.0

2.6

3.2

3.8

4.4

0.14 0.16 0.18 0.20 0.22 0.24 0.26

(a) (b)

Figure 24. Steady flow past a circular cylinder: variation of Cd with Re−0.5 for 15 � Re � 40
and 0.005 � B � 0.20 for the (a) slip and (b) towing tank boundary conditions.
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Figure 25. Steady flow past a circular cylinder: comparison of L extrapolated from the
proposed equation (7.1) and numerical data from the literature for 20 � Re � 400. Also plotted
is the formula proposed by Sobey (2000).

The empirical equations for –Cpb and ωmax corresponding to the unbounded flow,
obtained via the least squares curve fit are given as

−Cpb = 0.413 + 2.627 Re−1 for 6 � Re � 40, (7.11)

ωmax = −0.2284 + 0.9430 Re0.5 for 6 � Re � 40. (7.12)

7.7. Prediction of the parameters for the steady flow at higher Re

The empirical equations obtained for L, Cd , Cdp , Cdv and ωmax in the steady
recirculation regime, (7.1), (7.8), (7.9), (7.10) and (7.12), are linearly extrapolated
to predict these parameters for Re > 40 and compared with the empirical equations
and numerical data from the literature.

Figure 25 compares the bubble length L extrapolated from (7.1) with the formula
proposed by Sobey (2000), given by (7.2), and the numerical data from the literature
for 20 � Re � 400. It is found that the relation proposed by Sobey (2000) underpredicts
the bubble length for the Re range considered. For Re � 100, the predicted results
match well with the results of Dennis & Chang (1970). Up to Re = 300, L predicted
by the proposed equation displays satisfactory agreement with those predicted by
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Figure 26. Steady flow past a circular cylinder: comparison of Cd extrapolated from the
proposed equation (7.8) and numerical data from the literature for 20 � Re � 600. Also plotted
is the formula proposed by Smith (1981).

Fornberg (1980, 1991) and Gajjar & Azzam (2004). At Re = 400, L predicted by
(7.1) is 9.62 % smaller than that predicted by Fornberg (1991) and 7.07 % shorter
compared to the prediction of Gajjar & Azzam (2004).

In figure 26, the variation of Cd with Re predicted by (7.8) is compared with the
formula proposed by Smith (1981) and the numerical data from the literature for
the steady flow for 20 � Re � 600. For Re � 100, the predicted results display close
agreement with those of Son & Hanratty (1969) and Dennis & Chang (1970). For
Re � 400, Cd predicted by the proposed equation (7.8) compares favorably with the
data from Fornberg (1980, 1991), Ghia et al. (1986) and Gajjar & Azzam (2004). In
general, the predictions with the present equation are better than (7.7) proposed by
Smith (1981).

The pressure and viscous drag coefficients extrapolated from the proposed equations
(7.9) and (7.10), respectively, are presented in figure 27 and also compared with various
numerical results for 6 � Re � 100. It is observed that within the Re range, Cdp and
Cdv are of the same order of magnitude with Cdp exceeding Cdv . The comparison
reveals a satisfactory agreement between the predicted results and the results of
Dennis & Chang (1970), Henderson (1995) and Posdziech & Grundmann (2007).

The maximum vorticity on the cylinder surface extrapolated from the proposed
relation given by (7.12) for 7 � Re � 400 is compared with various numerical data
from the literature as shown in figure 28. For Re � 100, ωmax predicted by (7.12)
match well with the results of Dennis & Chang (1970). For Re � 200, the predicted
ωmax compares favorably with the results of Fornberg (1980, 1991) and Gajjar &
Azzam (2004).

8. Conclusions
A stabilized finite-element method has been employed to investigate the steady,

laminar flow around a stationary circular cylinder. Two sets of boundary conditions,
namely the slip and towing tank, have been studied. Results have been presented for
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Figure 28. Steady flow past a circular cylinder: comparison of ωmax extrapolated from the
proposed equation (7.12) and numerical data from the literature for 7 � Re � 400.

6 � Re � 40 and 0.000125 � B � 0.80. The results for B = 0.005 closely represent the
unbounded flow.

Res from the earlier studies varies between 3.2 and 7. The critical Reynolds number
for the onset of the flow separation has been found to be Res ≈ 6.29 for the unbounded
flow. The separation initiates from the base point, i.e. θs = 0◦, at Re = Res . The bubble
length is found to vary approximately linearly with Re. Irrespective of the boundary
conditions and blockage, the steady flow displays symmetry about the x1-axis.

For the first time, it is found that θs and Res display non-monotonic variation
with the blockage. Although it was not explicitly stated, non-monotonic variation of
L with B can be observed from figure 11 in the paper by Fornberg (1991). Using
the towing tank boundary condition, L and θs increase with the blockage for small
values of B . Beyond a critical blockage, a decrease in both the parameters with
increasing B is observed. In contrast, the variation of L and θs with B is associated
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with multiple regimes of non-monotonicity when the slip boundary condition is used.
The non-monotonic variation of L and θs with B arises due to the non-monotonic
movement of the separation point with the blockage. For B � 0.01, L and θs are free
from the blockage effect. For high blockage, compared to the slip boundary condition,
the towing tank condition leads to significantly larger acceleration of the flow near the
cylinder. Also, the vorticity generated at the sidewalls with the towing tank boundary
condition interferes with the advection of the vorticity generated on the surface of the
cylinder. The outcome is a delayed flow separation and, therefore, a shorter bubble
with the towing tank boundary condition. For large blockage, compared to the towing
tank boundary condition, the results predicted by the slip boundary condition for the
bubble dimensions are closer to the ones for the unbounded flow. For B � 0.04, both
the boundary conditions yield very comparable results.

The values of Res from the present computations, for each blockage, exhibit
close agreement with the value obtained via the criterion proposed by Srinivasan
(2006). Also, excellent agreement is found with the predictions of Chen (2000) for
0.10 � B � 0.70, using the towing tank boundary condition. For B � 0.01, Res is
insensitive to the blockage. In general, Res obtained with the slip boundary condition
are closer to the ones for the unbounded flow than those obtained with the towing tank
boundary condition. Therefore, the use of the slip boundary condition is recommended
for computation of flows if one is forced to use high blockage (B > 0.17) to predict
the unbounded flow characteristics.

The variation of various flow parameters with Re has been studied for the
unbounded flow, and empirical relations via curve fit have been proposed. The bubble
length varies as L = −0.847 + 0.1336 Re for Res <Re � 40. The flow separation
angle follows the relation θs = 77.66 − 152.65 Re−0.5 for 10 � Re � 40. The total drag
coefficient is expressed as Cd =0.26 + 7.89 Re−0.5 for 15 � Re � 40. The pressure
drag coefficient varies as Cdp =0.583 + 4.311 Re−0.64 for 6 � Re � 40. The empirical

equation for the viscous drag coefficient is expressed as Cdv = −0.016 + 4.938 Re−0.60

for 6 � Re � 40. The empirical equation for the base suction is found to be –
Cpb = 0.413 + 2.627 Re−1 for 6 � Re � 40. The maximum vorticity on the cylinder

surface obeys the relation ωmax = −0.2284 + 0.9430 Re0.5 for 6 � Re � 40. The
extrapolated results for L, Cd , Cdp , Cdv and ωmax match quite well with the numerical
results from the literature for the steady flow at higher Re. In almost all cases,
the proposed relations offer better agreement with the available experimental and
computational data as compared to the equations proposed earlier.
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